Q:

Which expressions are completely factored? Select each correct answer. 32y10−24=8(4y10−3) 16y5+12y3=4y3(4y2+3) 20y7+10y2=5y(4y6+2y) 18y3−6y=3y(6y2−2)

Accepted Solution

A:
Answer:
First option: 32y10−24=8(4y10−3)
Second option: 16y5+12y3=4y3(4y2+3)

1) 32y^10-24
Common factor: 8
8(32y^10/8-24/8)=8(4y^10-3)    Ok

2) 16y^5+12y^3
Common factor 4y^3
4y^3[(16y^5)/(4y^3)+(12y^3)/(4y^3)]=4y^3(4y^2+3)   Ok

3) 20y^7+10y^2
Common factor 10y^2
10y^2[(20y^7)/(10y^2)+(10y^2)/(10y^2)]=10y^2(2y^5+1)    No

4) 18y^3-6y
Common factor: 6y
6y[(18y^3)/(6y)-(6y)/(6y)]=6y(3y^2-1)   No