MATH SOLVE

2 months ago

Q:
# Which expressions are completely factored? Select each correct answer. 32y10−24=8(4y10−3) 16y5+12y3=4y3(4y2+3) 20y7+10y2=5y(4y6+2y) 18y3−6y=3y(6y2−2)

Accepted Solution

A:

Answer:

First option: 32y10−24=8(4y10−3)

Second option: 16y5+12y3=4y3(4y2+3)

1) 32y^10-24

Common factor: 8

8(32y^10/8-24/8)=8(4y^10-3) Ok

2) 16y^5+12y^3

Common factor 4y^3

4y^3[(16y^5)/(4y^3)+(12y^3)/(4y^3)]=4y^3(4y^2+3) Ok

3) 20y^7+10y^2

Common factor 10y^2

10y^2[(20y^7)/(10y^2)+(10y^2)/(10y^2)]=10y^2(2y^5+1) No

4) 18y^3-6y

Common factor: 6y

6y[(18y^3)/(6y)-(6y)/(6y)]=6y(3y^2-1) No

First option: 32y10−24=8(4y10−3)

Second option: 16y5+12y3=4y3(4y2+3)

1) 32y^10-24

Common factor: 8

8(32y^10/8-24/8)=8(4y^10-3) Ok

2) 16y^5+12y^3

Common factor 4y^3

4y^3[(16y^5)/(4y^3)+(12y^3)/(4y^3)]=4y^3(4y^2+3) Ok

3) 20y^7+10y^2

Common factor 10y^2

10y^2[(20y^7)/(10y^2)+(10y^2)/(10y^2)]=10y^2(2y^5+1) No

4) 18y^3-6y

Common factor: 6y

6y[(18y^3)/(6y)-(6y)/(6y)]=6y(3y^2-1) No